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Multiscale recursion in dense hydrogen plasmas

Stéphane Bagnier,* Pierre Dallot, and Gilles Ze´rah
Commissariat a` l’Energie Atomique, BP 12, 91680 Bruye`res-le-Chaˆtel, France

~Received 24 September 1999!

We present and assess a multiscale recursion method to calculate electronic density via the Green’s function.
The method lies within the framework of finite temperature density functional theory and uses a real space
approach. It provides a satisfactory description of the first Brillouin zone without invokingk points. Unlike
methods that explicitly calculate eigenstates, the computational workload decreases with temperature. Tests are
performed on a system representing a hydrogen plasma with a local pseudopotential. Calculations are distrib-
uted on real space grids with different spacings using scaling properties of the recursion. The computational
workload increases linearly with the size of the system and can be productively dispatched on an arbitrarily
large number of processors.

PACS number~s!: 52.65.2y, 71.15.Mb, 71.23.An
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I. INTRODUCTION

Interest in dense hydrogen plasmas is threefold. F
these plasmas are important in astrophysics@1# since hydro-
gen is responsible for 80% of our solar system. Second,
are the core of inertial confinement fusion. Their descript
is thus a technological issue. Last, a plasma phase trans
might occur at temperatures and densities characteristi
giant planets and low-mass brown dwarfs@2,3#. The plasma
properties relevant to these problems~equation of state, con
ductivity, viscosity! depend on modeling the electron
screening of the field created by the ions. This problem
recently been tackled using a variety of methods~see@4# for
a comparison!. Path integral Monte Carlo calculations ha
been performed to investigate the existence of a pla
phase transition@5#. Other methods rely on a more approx
mate treatment of the interacting many-fermion problem,
ing either the tight binding model@6# or the local density
approximation of the density functional theory~DFT/LDA!.
Clerouin and co-workers performedab initio molecular dy-
namics using Thomas-Fermi-like functionals@7,8,4#. The dy-
namical variable is then the electronic density directly and
electronic state needs to be considered. This method, h
ever, has the shortcomings of the Thomas-Fermi approxi
tion. An important step toward an accurate simulation
plasmas was taken by Alavi and co-workers@9–13#. The
electronic density is obtained by summing up the square
occupied wave functions. Because the number of occup
states increases rapidly with temperature, their metho
usually limited to temperatures smaller than a few eV.

A method to calculate the electronic density with t
same accuracy without recourse to eigenstates would thu
quite useful. This is the main thrust of our work. In th
paper, we present a method to calculate accurate electr
densities at higher temperatures from a local pseudopo
tial. The case of hydrogen is simple in this respect beca
core electrons are irrelevant. The pseudopotential aim
representing smoothly the Coulomb singularity in a su

*Author to whom correspondence should be addressed. Electr
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ciently large energy range@15#.
The method we present is a finite temperature extens

of the proposal of Baroni and Giannozzi@16#. Considering a
silicon crystal at zero temperature, they performed a rec
sion on a regular grid in real space using a finite differen
representation of the Hamiltonian to compute the diago
term of the Green’s function. The computation time is th
proportional to the number of atoms in the cell~order N
method!, in contrast to the square of this number for schem
involving eigenstates. The prefactor, however, was v
large and the method was not competitive with diagonali
tion techniques. A finite temperature extension of the rec
sion method has already been introduced in the contex
bond order potentials@17,18#, essentially as an artificial way
to broaden the Fermi surface. Because of the subseq
damping of Friedel’s oscillations, the convergence of the
cursion is substantially improved. Thus, it seems natura
investigate the behavior of a real space recursion sch
when the electronic temperature is finite, as is the case
plasma. The resulting method can be expected to prov
order N parallelized code, whose computational speed
creases with temperature, because of enhanced localiz
of the density matrix@19#. This is, of course, in sharp con
trast to wave function methods.

We first give a brief overview of the Green’s function an
recursion techniques that we use and of their application
the calculation of the electronic density in a hydrog
plasma. We then present several approximations that we
plain from a local density of states~LDOS! viewpoint, and
compare the results with those of the free energy functio
molecular dynamics~FEMD! code of Alavi et al. @12,14#.
We finally propose and assess a multiscale recursion met

II. GENERAL BACKGROUND

Following @12#, we place ourselves within the finite tem
perature DFT framework@20,21#. We use Mermin’s func-
tional together with the Kohn and Sham approximation to
kinetic energy. The local density approximation is used
describe exchange and correlation. Thus, the electronic
sity is the weighted sum of the squares of one-electron eig
functions:
ic
6999 ©2000 The American Physical Society
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r~r !5(
i

f if i* ~r !f i~r !. ~1!

In this expression, the factorf i is the Fermi-Dirac occupation
f i5(11eb(e i2m))21, the chemical potentialm is chosen to
achieve electric neutrality, and the one-electron eigenfu
tions are the self-consistent solutions that minimize M
min’s functional. They are solutions of

S 2
D

2
1veff~r i ! Df i~r i !5e if i~r i !. ~2!

When the interaction with the ions is represented b
pseudopotentialvps, the self-consistent effective potenti
veff is obtained from the electronic density and the ion
positions as

veff~r !5E r~r 8!

u2r 8u
dr81(

ions
vps~ ur 2Ri u!1vxc„r~r !….

~3!

Hence, the electronic density determines the potential,
the density depends on the potential by means of the o
electron wave functions. Our objective is to bypass the c
culation of wave functions when calculating the density fro
the potential. This is possible using Green’s function te
niques combined with the recursion method. The electro
density can be directly expressed in terms of the one-elec
Green’s function:

r~r !52
i

p R f ~z!G~r ,z!dz. ~4!

In this expression, the integral is performed on a contou
the complex energy plane which contains the relevant p
of the Hamiltonian but leaves out the poles off (z). The
factorG(r ,z) is the diagonal element of the Green’s opera
calculated at a real space pointr:

G~r ,z!5^r uĜ~z!ur &5^r u~z2Ĥ !21ur &. ~5!

The recursion method permits an efficient calculation
the diagonal matrix elements of the Green’s function in a
state@22,23#. Expression~5! assumes the use of the localize
basisur&. Expressing the Hamiltonian in this basis is the
fore a prerequisite to performing the recursion. This can
done by means of a finite difference approximation,
shown in Ref.@16#. Given an appropriate formulation for th
Hamiltonian, the recursion is performed by constructing
chain of states. The initial state isuu0&5ur &. The principle is
then to describe how this localized state is coupled by
Hamiltonian to its environment. A part ofĤuu0& projects
onto uu0&. The rest of it is orthogonal touu0& and defines a
new stateuu1&:

Ĥuu0&5a0uu0&1b1uu1&. ~6!

The normalized stateuu1& is then coupled by the Hamil
tonian to a new state, orthogonal to bothuu0& and uu1&. The
recursion is the iteration of this process, which defines
quences of states and recursion coefficients. Further in
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chain, a recursion stateuun& is coupled to the states that a
immediately before and after it:

Ĥuun&5bnuun21&1anuun&1bn11uun11&. ~7!

This equation definesuun11&, bn11 , andan . The recursion
coefficients are

an5^unuĤun&, bn5^un21uĤuun&. ~8!

These coefficients are, respectively, the energy in the s
uun& and the hopping integral between statesuun21& and
uun&. In summary, the recursion produces an orthogonal
sis of states in which the Hamiltonian has a tridiagonal for
This remarkable property allows the diagonal element of
Green’s functionG(r ,z)5^u0uĜ(z)uu0& to be written as a
continued fraction in terms of the recursion coefficientsan
andbn @24#:

G~r ,z!5
1

z2a02
~b1!2

z2a12
~b2!2

z2a22¯

. ~9!

The local density of states can then be computed as

n~E,r !52 1
p

lim
s→01

Im G~r ,E1 is!. ~10!

To simplify notations, we will denote the LDOS byn(E),
the real space location being always implicit. As the know
edge of the LDOS leads to the electronic density inr, the
recursion coefficients together with Eq.~1! are sufficient. As
will be shown, the recursion coefficients that we gener
fluctuate around some constant values, and converge to t
values when the rank increases. We will therefore use lin
response around the constant chain model, which can
found in Ref.@23#.

The constant chain model is obtained when the coe
cients an and bn are constants equal toa and b. Haydock
shows that the local density of states associated with
chain forms an arc with centera and width 2b:

n~E!5HA4b22~E2a!2/4b1/2 if a22b<E<a12b

0 otherwise.
~11!

Assuminga52b, the lower band edge is equal to zero. R
mark thatn(E) has been normalized so as to be independ
of a52b in the limit of small energies. Fluctuationsdan and
dbn around the constant valuesa and b generate modifica-
tions in the LDOS. Within linear response, Haydock sho
that the correctiondn(E) to the above density is equal to

dn~E!5
1

p2b1/2 (
n50

`

$dan sin@~2n12!u#

1dbn11 sin@~2n13!u#%, ~12!

whereu is a reduced variable ranging from zero top:
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u5cos21S E2a

2b D . ~13!

The dan anddbn induce corrections in the LDOS whic
are, respectively, antisymmetric and symmetric with resp
to the center of the distribution. The fluctuations associa
with very large values ofn do not strongly affect integrate
quantities such as the electronic density, thus justifying
approximate treatment of the continued fraction@Eq. ~9!# for
large n. As will be seen, our calculated coefficients alwa
saturate around some constant values. This will allow the
of the constant chain terminator suggested by Haydock:
will replace the exact coefficients with the constant valu
after a certain rank.

III. REFERENCE SYSTEM

Throughout this work, we compare our results with tho
obtained from a different method to calculate the electro
density. This reference method is that used in the free en
functional molecular dynamics code of Alavi and co-worke

@12,14#. It consists of diagonalizing the operatore2eĤ using
the Lanczos algorithm@25#. This operator has the sam
eigenvectors as the Hamiltonian. Whene is small, it is easier
to diagonalize than the Hamiltonian, because it is better c
ditioned.

The electronic density is then calculated as the sum of
squares of the eigenvectors. This technique is performed
system contained in a periodic box. Hence, the eigenvec
of the Hamiltonian are Bloch functions cnk(r )
5unk(r )exp(ik"r ), whereunk has the same periodicity as th
potential, and wherek belongs to the first Brillouin zone
Following @26–28#, the summation upon the first Brillouin
zone, required, for example, when calculating the electro
density, is usually reduced to a finite sum over a small nu
ber of specialk points. The number ofk points retained in the
calculation then determines the accuracy of the calculat
The most drastic approximation consists of retaining only
center of the first Brillouin zone: theG point. In this case, the
calculated wave functions have the same periodicity as
potential. This approximation may have severe con
quences, especially when the simulation box is small. Al
emphasized that theG point restriction could skew quantita
tive calculations for hot dense hydrogen@13#. Recently,
Deutsch implemented a many-k-point ability into the FEMD
code@14#. In this article, we will first use theG-point restric-
tion for testing the recursion method and evaluating the
curacy of the real space discretized kinetic operators. T
we will go beyond this approximation, and compare our
sults with eight-k-point FEMD calculations.

The physical system upon which the comparisons will
made is a hydrogen plasma. The plasma is simulated wi
a cubic box with periodic conditions in the three directio
of space. The electron-ion interaction potential is represen
by a local pseudopotential which smooths out the Coulo
singularity in the vicinity of the ions. The pseudopotent
that we use has been proposed by Giannozzi@15#:

v I~r !52
1

r
erfS r

r c1
D1~a1br2!expF2S r

r c2
D 2G , ~14!
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where r c150.25, a521.9287,b50.3374, andr c250.284
~all in a.u.!.

The value of this pseudopotential at the origin is equa
a, which is about22 hartree'255 eV. Hence, we expec
this potential to give a reasonable description of the den
up to temperatures of 5 eV.

The location of the atoms was obtained from a short
of molecular dynamics performed with the FEMD code. T
initial configuration was bcc, but the temperature~3 eV! was
sufficient to obtain disordered configurations. The simulat
was stopped when the averaged atomic motion was la
than the interatomic distance. The degree of disorder
then considered to be sufficient. The characteristics of
test system are listed in Table I.

This reference ionic configuration was then used to cal
late self-consistent electronic densities using respectiv
one and eightk points. The electronic density was converg
with respect to the number ofk points in the second case. I
both cases, the electronic densityrA ~see Fig. 3 below! and
the self-consistent electronic and chemical potentialsueff and
m were stored. The potentials are to be used as input par
eters in our recursion calculations. The resulting densityrR
is then to be compared with the relevant reference den
rA .

IV. TESTS OF THE RECURSION METHOD

As a first step toward constructing an efficient algorith
we present a first implementation of the recursion techni
that serves as a test of our recursion procedure. This sim
case will be used later to assess further approximations.
restrict ourselves to theG point, that is, we consider only
periodic states. This approach allows the use of the fast F
rier transform~FFT! to computeĤuun&.

A. Continuous Fourier recursion method

The kinetic term ofĤ is diagonal in Fourier space, with
eigenvaluesk2/2. When using the FFT to compute this term
the only approximation performed is the grid cutoff. We d
note this method ‘‘continuous,’’ as opposed to the real sp
discretized methods that we examine in the next section.
start the recursion with a state localized in one of the g
cells in the simulation box: uu0&5ur &. Let uun& be thenth
state in the chain; the next state is obtained by applying
following procedure.

~1! Apply Ĥ onto uun&. The Fourier transform ofuun& is

TABLE I. Characteristics of the test system.

Temperature 3 eV
Density 0.5 g/cm3

Ion sphere radius r s51.72 a.u.
Coupling parameter G5ECoulomb/Ekinetic'5.2

Degeneracy u5T/TFermi'0.18
Side of the simulation cell 7 a.u.

Composition 16 hydrogen atoms
Discretization 32 points per dimension
Energy cutoff 103 a.u.

Boundary conditions periodic
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7002 PRE 61BAGNIER, DALLOT, AND ZÉRAH
uv&←F @ uun&].

Next, we apply the kinetic energy operator~diagonal in re-
ciprocal space!,

uv&←uv&
k2

2
.

We transform backuv& in real space,

uv&←F 21@ uv&].

Then we add the potential energy,

uv&←uv&1veffuun&.

~2! Calculatean .

an5^unuĤuun&5^unuv&.

~3! Prepare the next chain stateuun11&.

uun11&←~Ĥ2an!uun&2bnuun21&5uv&2anuun&2bnuun21&.

~4! Calculatebn11 .

bn11
2 5^un11uun11&.

~5! Normalizeuun11& .

uun11&←
1

bn11
un11&.

Note that the first step in the chain is singular, because
stateuu21 does not exist. The coefficientb0 is taken equal to
zero.

We first test the method in the case of a free electron
periodic box. The simulation box is the one described in
preceding section, but the electronic potential is set equa
zero. The initial state is localized into one of the element
cells constituting the grid. This elementary cell is a cube w
a sideh equal to the grid spacing~the 32nd part of the side o
the simulation box!. Because of periodic conditions, this e
ementary state is reproduced in every image of the sim
tion box: the electronic state has the simulation box peri
icity.

The recursion coefficients obtained are plotted in Fig.
They fluctuate around some constant values, and the fluc
tions of an andbn seem correlated to one another. Note th
these coefficients are very different from those calculated
Haydock in the case of a free electron placed in an infin
space@23#. The first are approximately constant, whereas
second tend to infinity asn increases. This difference can b
understood from the LDOS. The fact that the simulation b
is discretized in real space implies the existence of a cuto
k space: kinetic energies larger than 3(2p/h)2/2 cannot be
reached~see Fig. 2!. Hence, the LDOS of our discretize
system forms an isolated band which can be described,
first approximation, by the constant chain model. In our ca
the constants area'140 andb'70. These are respectivel
one-half and one-quarter of the bandwidth of the cons
chain LDOS, as can be checked on Fig. 2. The fluctuati
dan and dbn have the effect of correcting the shape of t
e

a
e
to
y
h

a-
-

.
a-
t
y
e
e

x
in

a
e,

nt
s

LDOS according to formula~12!. Hence, the observed satu
ration of the chain coefficients is directly related to the use
a grid to represent the electrons. Because this featur
shared by all the models that we will consider, it will alwa
be possible to use the constant chain terminator~see Sec. II!.

We now turn to the calculation of the electronic dens
rR in the model system of Sec. III. A recursion of 100 ste
was initiated in each grid cell. The recursion coefficien
were calculated in this process. The Green’s function co
then be obtained as a continued fraction using the recur
coefficients and the constant chain terminator~the constants
used were the last values ofan andbn calculated!. The elec-
tronic density is finally calculated by performing a conto
integral in the complex energy plane according to Eq.~1!.

In this case the recursion scheme assumes periodic co
tions for the chain states. Hence, the recursion describes
periodic states. The FEMD calculation that we must comp
to is therefore the one performed using only theG point. The
two methods then solve the very same problem, and, ind

FIG. 1. Calculated coefficientsan and bn obtained using the
continuous Fourier recursion method in the free electron case.

FIG. 2. Free electron case: LDOS in the periodic box and LD
of the related constant chain model. The lower bound is equa
zero and the upper bound is dictated byh, the step of the discreti-
zation. Emax5kmax

2 /253p2/2h2'310 a.u. By comparison, the cut
off energy used in the FEMD calculation is aboutECUT5kCUT

2 /2
5p2/2h2'103 a.u.
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PRE 61 7003MULTISCALE RECURSION IN DENSE HYDROGEN PLASMAS
the densityrR is then essentially similar torA ~Fig. 3!. The
map of differences is shown in Fig. 4.

The densityrR is thus very close torA . It is slightly
larger, showing a maximum difference of 2% localized clo
to the ions. We attribute this positive difference to the fa
that the two methods do not share the same kinetic opera
approximations. Then the calculated densityrR cannot be
strictly consistent with the effective and chemical potentie
We expect that a self-consistent calculation could dimini
the overscreening seen in Fig. 4. This result validates
recursion procedure, the use of a constant terminator, and
calculation of the density@Eqs.~1! and ~4!#.

B. Real space discretized kinetic operator

Between 1992 and 1997, Baroni and Giannozzi and G
bauer performed recursions using a kinetic operator d
cretized in real space. They used three-@16# and five-point
@29# finite difference formulas. The discretized Hamiltonia
can be expressed in Fourier space or directly used in r
space, with no recourse to Fourier transforms.

Let h be the grid spacing, and̂r j uĤur i& the coupling be-
tween a state localized inr i and a state localized inr j . The
three-point formulas are

^r j uĤur i&5H 3/h21veff~r i ! if r i5r j

21/2h2 if ur i2r j u5h

0 otherwise.

~15!

FIG. 3. Reference electronic densityrA on a section of the sys-
tem. The zones of high density correspond to ion locations. T
density is approximately constant in between.

FIG. 4. urR2rAu: density differences between the two method
related to the section shown in Fig. 3.
e
t
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.
h
e
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e-
s-
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Expressed in Fourier space, this kinetic operator is diago
and its eigenvalues are

EK~kx ,ky ,kz!52
cos~kxh!1cos~kyh!1cos~kzh!23

h2 .

~16!

If we use five points instead of three, the formulas are

^r j uĤur i&55
90/~24h2!1veff~r i ! if r i5r j

216/~24h2! if ur i2r j u5h

1/~24h2! if ur i2r j u52h

0 otherwise

~17!

and in reciprocal space

EK~kx ,ky ,kz!5
1

6h2 S 16(
i

xyz

cos~kih!

2(
i

xyz

cos~2kih!215D . ~18!

Again, we first consider the free electron case in a pe
odic box. The eigenvalues of the discretized Hamiltonia
tend to those of the continuous Hamiltonian whenuku is
small. For larger values ofuku, the change in the eigenvalue
can be interpreted as a change in the LDOS which is re
sented in Fig. 5. On this figure, we clearly see that the fi
point formula is more accurate than the three-point one,
cause the associated density of states is closer to the e
one in a larger energy zone.

The recursion coefficients for a free electron in a perio
box related to the five-point discretized Hamiltonians a
shown in Fig. 6 and listed in Table II. The coefficients sho
saturations for smaller values than they did with a continu
Hamiltonian, because the bandwidths associated with
discretized Hamiltonian are smaller~see Fig. 5!. The fluctua-
tions around these constant values are also much sma
Moreover, the value ofan calculated with the three-poin
formula is exactly constant. This is because fluctuations inan
would generate antisymmetrical corrections to the cons
chain LDOS~Fig. 2!, whereas the three-point LDOS is ex

e

,

FIG. 5. Density of states related to the continuous and d
cretized Hamiltonians~three and five points!.
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7004 PRE 61BAGNIER, DALLOT, AND ZÉRAH
actly symmetrical with respect to the center of the band~Fig.
5!. Fluctuations inan are therefore unnecessary to obtain t
exact three-point LDOS.

We next compare the convergence properties of vari
schemes in the free electron case. A temperature of 3 e
assumed. The chemical potential is evaluated within
Thomas-Fermi approximation, assuming a density co
sponding to 16 electrons in the simulation cell. This appro
mation should not affect the convergence rate. We then
culate the density as a function of the numbern of recursion
coefficients taken into account~we replace the coefficients o
rank higher thann by an andbn). The results are shown in
Fig. 7.

The densities converge toward the same limit despite
fact that the densities of states are very different. This
because the occupied states have small energies~compared
to a, for instance!, and because the various expressions
the kinetic energy are equivalent in this limit. The fas
convergence of the discretized schemes is interpreted as
lows: The densities of states related to discretized sche
are closer to their associated constant chain densitie
states. Hence, small correctionsdn(E) to the constant chain
model are sufficient to obtain an accurate representatio
the exact LDOS and, therefore, of integrated quantities s
as the electronic density.

We now compare the discretized schemes with the re
ence method~see Fig. 8!. The FEMD code yields a potentia
veff a chemical potentialm, and an electronic densityrA
calculated with theG point only. Using the potentials, w
calculate an electronic densityrR from the recursion method

FIG. 6. Recursion coefficientsan andbn for a free electron in a
periodic box, calculated~1! with a continuous Hamiltonian~solid
line! and~2! with a five-point formula within the conditions of Fig
1 ~dots!.
s
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e
is

r
r
ol-
es
of

of
h

r-

and the discretized schemes. The three-point scheme is fo
to yield correct results almost everywhere, except in the
cinity of the ions, where we find up to 6% difference wi
respect torA . The three-point approximation introduces
systematic error, which can only be avoided by using a fi
grid and so increasing the computation time. By contrast,
density differences obtained between the five-point sche
and ~1! the continous Hamiltonian, and~2! the reference
FEMD calculationrA ~both in Sec. IV A!, are both smaller
than 2%. It is concluded that the five-point discretizati
does not alter the precision of the recursion scheme in th
conditions. We therefore retain the five-point scheme in
rest of this work.

At this point, we have implemented the recursion meth
and validated the use of a constant terminator. We have
found an approximation to the continuous Hamiltoni
which is accurate and can be used without recourse tk
space. Thus, the recursion can now be implemented in
space and it need not be constrained by the limits of
simulation cell. The cell itself is extended by periodicity, b
the chain states need no longer be subject to periodic co
tions. The recursion scheme is then equivalent to using m
k points in a FEMD calculation. However, extending th
chains is computationally expensive since computation t
grows like the fourth power of the chain length. We no
present a strategy that allows extending the chains at a
sonable cost.

V. MULTISCALE STRATEGY

When concluding their paper@16#, Baroni and Giannozzi
remarked that recursion chains starting from neighbor

FIG. 7. Convergence of the electronic density as a function
the number of recursion coefficients taken into account. The fi
point scheme converges faster.
TABLE II. Recursion coefficients for a free electron. Units are a.u. throughout.

Continuous
Hamiltonian

Five-point discretized
Hamiltonian

Three-point discretized
Hamiltonian

Average value ofa '140 '80 '60
Average value ofb '70 '40 '30
Fluctuations ina '20 '5 no fluctuation
Fluctuations inb '10 '2 '2
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points contain almost the same information. Hence, much
the calculation performed in the recursions appears to
redundant. In their conclusion, they envisioned the use o
hierarchy of chains related to different grid spacings, wh
would allow the calculation of better terminators. Unfort
nately, this procedure was never implemented. We now p
pose an analysis of the recursion coefficients that permi
practical use of this idea.

As seen in Sec. II, the recursion coefficients are aliase
the LDOS. Within linear response theory, the recursion
efficients can be calculated from the LDOS as the coe
cients that dictate its shape in a certain basis@Eq. ~12!#.
Hence, the coefficients vary continuously from one cell
another, because the LDOS does. In addition, the recur
coefficients represent couplings between consecutive c
states. The chain states generated in our recursions take
nificant values within zones that can be schematically rep
sented as spheres with radii proportional to the rank in
chain. Thenth recursion coefficients thus represent the
sponse at the center of the sphere to perturbations in the
described by the sphere, as mediated by the chain state
order lower thann. The recursion coefficients related to tw
neighboring cells will therefore be closer when the rank
large, because the spheres tend to be identical. This tren
observed in the calculated coefficients~see Fig. 9!.

FIG. 8. urR2rAu: absolute differences in the calculated den
ties between the reference model~G point! and the recursion per-
formed in the five-point scheme. The differences are calculated
the section of the simulation box shown in Fig. 3.

FIG. 9. Coefficientsan related to two neighboring points 1 an
2 in the model system.
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For the same system, we now consider two differe
grids, one with a spacingh, denoted the 1-grid, and the othe
with a spacing 2h, denoted the 2-grid. Each cell in the 2-gr
contains eight 1-grid cells. Ifh is small, a property calculated
in a 2-grid cell is approximately an average over these e
1-grid cells. We can iterate the procedure and define ap-
grid with a spacing 2ph. For example, each cell in the 4-gri
contains eight 2-grid cells and 64 cells in the finer grid.

A recursion performed on the 2p-grid is denoted a 2p-
recursion. The chain states it generates have the same sp
cal structure obtained in the 1-grid. Thenth chain state, how-
ever, would roughly correspond to the 2nth chain state cal-
culated on the 2p21-grid and initiated from any of the eigh
cells included in the initial state. Indeed, Gebauer@29# has
observed a strong correlation between the fluctuations of
recursion coefficients on the 2-grid (dAn ,dBn) and those on
the finer one (da2n ,db2n) ~Fig. 10!. As proposed in@29#, an
explicit understanding of this property is obtained from
analysis of the LDOS.

When performing a recursion for a free electron~potential
set equal to zero!, fluctuations in the recursion coefficien
dan

free5an
free2a and dbn

free5bn
free2b transform the constan

chain LDOS~Fig. 2! into the LDOS associated with the dis
cretized Hamiltonian~Fig. 5!. Because these fluctuations a
small, this modification to the LDOS can be obtained with
linear response@Eq. ~12!#. When performing the recursion
with a step 2h, the discretized free electron Hamiltonian
divided by a factor 4. This implies that the recursion coe
cients, the bandwidth, and the zone where theAE LDOS is
correctly described are divided by this factor 4:a54A, for
example. The normalization introduced in Eq.~11! makes
the small energy part of the free electron LDOS invariant
this change of scale.

In the general case, the LDOS accounts for the existe
of a potential. The recursion coefficients have additio
fluctuations: dan

pot5an2dan
free2a and dbn

pot5bn2dbn
free

2b. These fluctuations are smaller than those shown in
10, and they vary continuously from one point to another a
from one rank to another. Our objective is now to use
invariance of the LDOS in a change of grid to interpolate t

-

n

FIG. 10. Fluctuations of the recursion coefficients with stepsh,
2h, and 4h: da4N , dA2N , and dAN . They are small and ap
proximately superimposable whenN is large. These fluctuations
arise from both the kinetic and potential terms.
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dan
pot anddbn

pot fluctuations on a 1-grid from the fluctuation
dAn

pot anddBn
pot on a 2-grid. Because the additional fluctu

tions dAn
pot and dBn

pot are small, their contribution to the
LDOS can also be obtained within linear response the
around the constant chain model. We now make use of
property to establish a relation between fluctuations rela
to different grid sizes. Sincea52b, A52B ~see Sec. II!, a
54A and identifying the related corrections to the LDOS
the limit of small energies, we write

(
p

dap
pot

p2b1/2sinF ~2p12!cos21S E

2b
21D G

'(
q

dAq
pot

p2B1/2sinF ~2q12!cos21S E

2B
21D G . ~19!

Focusing on the small energies, and expanding the co21

term asAE/b whenE/b is small, the two series coincide fo
da2q11

pot 52dAq
pot andda2q

pot50.
Since the 1-recursion coefficients contain more inform

tion than the 2-recursion ones, there is a certain freedom
choice for the interpolation formula. Because the calcula
dap

pot are continuous from one rank to another, we interpol
the dap

pot for the even values ofp:

da2q11
pot 5dAq

pot, ~20!

da2q
pot5dAq21/2

pot interpolated. ~21!

A similar identification can be performed for 4-recursio
and for coefficientsb. A noninteger rank is found in the latte
case. This means that 1-recursion coefficients interpo
those related to a double step. The results are summariz
Table III. This interpolation scheme is still compatible wi
Eq. ~19!. An example of the correspondence between den
corrections is shown in Fig. 11.

We may now compare efficiently the recursion coe
cients related to different scales. Given a seriesan of recur-
sion coefficients, we first subtract the associated free elec
coefficientsan

free5a1dan
free, so as to remove the fluctuation

associated with the kinetic term. The remainderdan
pot5an

2an
free is then due to the potential. The fluctuationsda4N13

pot ,
dA2N11

pot , anddAN
pot are compared in Fig. 12. As expecte

the fluctuations are smaller and the agreement between
ferent scales is improved over those in Fig. 10. This sc
invariance property is the basis of the multiscale appro
that we now propose.

It may be remarked that this scale invariance prope
does not correspond to the renormalization method propo

TABLE III. Correspondence of ranks from one scale to anoth
The associated density corrections are identical in the limit of sm
energies.

4-recursion 2-recursion 1-recursion

Coefficient N 2N11
a N 2N11 4N13

Coefficient N 2N11/2
b N 2N11/2 4N13/2
y
is
d

-
of
d
e

te
in

ty

on

if-
le
h

y
ed

by Giannozziet al. @24#. The latter method consists of build
ing new recursion coefficients by merging recursion steps
groups of two. The number of coefficients in the new cha
is half that in the original one, as is the case with
2-recursion. The renormalized chain, however, retains m
information in the 1-recursion than can be found in t
2-recursion.

Nevertheless, our approach allows us to interpolate dis
1-recursion coefficients from 2- and 4-recursions. We p
form three recursions of 20 steps each, with grid spacingh,
2h, and 4h. We then constitute an interpolated chainan ,bn
as follows. Forn<20, we retain the single step coefficient
For 21<n<40, we interpolate the potential-related fluctu
tions of the double step coefficients and add the free elec
single step coefficient:

a2N5a2N
free1dAN21/2

pot , b2N5b2N
free1dBN21/4

pot ,
~22!

a2N115a2N11
free 1dAN

pot, b2N115b2N11
free 1dBN11/4

pot .

Here, fractional indices indicate interpolation. For 41<n
<80, we interpolate the quadruple step coefficients:

a4N5a4N
free1dAN23/4

pot , b4N5b4N
free1dBN23/8

pot ,

a4N115a4N11
free 1dAN21/2

pot , b4N115b4N11
free 1dBN21/8

pot ,
~23!

a4N125a4N12
free 1dAN21/4

pot , b4N125b4N12
free 1dBN11/8

pot ,

a4N135a4N13
free 1dAN21/2

pot , b4N135b4N13
free 1dBN13/8

pot ,

For n>81, we use the constant chain terminator with co
stants equal toa80 andb80.

The computation cost grows like the fourth power of t
chain length. Furthermore, the relative locations of the 4
and 1-grids are such that only one 4-recursion is neces
for 64 points on the 1 grid~one 2-recursion for 8 points on
the 1-grid!. The multiscale strategy is therefore 224 tim
faster than a method in which a recursion of 80 steps wo

r.
ll

FIG. 11. Example of correspondence between density cor
tions to the constant chain model related to steps,h, 2h, and 4h.
The corrections related toa4N13 , A2N11 , andAN are identical in
the limit of small energies.
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PRE 61 7007MULTISCALE RECURSION IN DENSE HYDROGEN PLASMAS
need to be performed in every point of the 1-grid. Let us n
check the accuracy of this approximation. Figure 13 sho
an example of the relative differences between the exact
interpolated recursion coefficients. The relative differen
are of the order of 1024 for coefficients originating from the
2-recursion, and of the order of 1023 for those calculated
from the 4-recursion.

These differences can be assessed in the light of the
tial derivatives]r/]an . The derivatives are shown in Fig. 1
for a representative point in our reference system~variations
of the derivatives were found to be small throughout
system!. The fluctuations seen on the figure are related
Friedel’s oscillations. The fluctuations tend to zero and t
means that the remote details of the potential will hav
limited impact on the density where the recursion was in
ated. Given our choice of discretization, the density is m
sensitive to the coefficients with ranks smaller than 20.
therefore retain exact coefficients up to this rank. The sma
amplitudes of the derivatives with higher ranks justify t
use of an approximation for the corresponding coefficie

FIG. 12. Additional fluctuations of the recursion coefficien
with stepsh, 2h, and 4h: dan

pot , dAN
pot , anddAN

pot . The agree-
ment is improved over that in Fig. 10. The fluctuations related to
kinetic term have been subtracted and a shift has been taken
account.

FIG. 13. Relative differences between thean calculated in a
recursion of 80 steps and the coefficients deduced from our in
polation procedure.
s
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~interpolation or constant chain value!.
We finally compare the densityrR calculated in the ref-

erence system with our method, and the densityrA calcu-
lated with the FEMD code. Our recursion calculation is p
formed in an extended cell, meaning that the chain sta
extend into the images of the simulation cell. Our result
therefore compared with the reference FEMD calculat
performed with eightk points. The results are shown in Fig
15. The observed differences are smaller than 2%. This
curacy validates our multiscale approach. We now turn to
computation time required by the method.

VI. DISCUSSION

A direct comparison of computation time with the FEM
code is not so easy. During the self-consistent calculation
took an average of 1 min 40 sec for FEMD to calculate
electronic density from the electronic potential on 64 proc
sors of the T3E Cray computer of Bruye`res-le-Chaˆtel. This
computation time is the best we obtained using this mach
The computation time using 128 processors is considera
larger than that with 64 processors, since the communica
time increases with the number of processors. Our multisc
recursion took 9 min 30 sec to calculate the density us
128 processors. Although this computation time is larger,

e
to

r-

FIG. 14. Values of]r/]an calculated for a representative poin
in our model system.

FIG. 15. urR2rAu: Map of differences between the FEMD den
sity using eightk points, and the multiscale recursion performed
an extended cell.



re

o
th
D
9
it

th
g

rb
n

en
t
6
b

an
e
ti

v
ic

a
er
it

ion
h
cu

we

res
ro-

ison
h-
all,
ht

been
tion
and
ers

e
ce
vely

-
ac-
lf-

h
a

au,

7008 PRE 61BAGNIER, DALLOT, AND ZÉRAH
scaling properties of our method make this a very good
sult.

Because recursion calculations are independent from
point to another, the computation cost is proportional to
size of the system. Our method is competitive with FEM
when the size of the system is increased. A system of
hydrogen atoms would require six times as much time w
our method, and 62536 times as much with FEMD. Both
methods would need the same time on the T3E Cray in
case, but the balance falls in favor of the recursions for lar
systems.

The recursions, however, can be distributed on an a
trary number of processors. When running the program o
parallel computer~or on a farm of workstations!, it suffices
to distribute grid points into small groups which are th
dispatched to processors. In our multiscale approach,
groups retained are the 4-grid cells, which are groups of
cells in the 1-grid. The recursion calculations can then
performed without communication between processors,
the total computation time is simply divided by the numb
of processors used. The use of massively parallel compu
would definitely make the recursion method faster.

Another important property of the recursion is its beha
ior with respect to temperature. Unlike schemes in wh
eigenstates are computed~FEMD, for example!, the calcula-
tion of the density in the recursion framework is faster
higher temperature. The 3 eV temperature that we consid
is the highest limit that can reasonably be simulated w
FEMD. By contrast, this temperature is low for the recurs
scheme to be efficient. Shorter chains are sufficient at hig
temperatures. As an example, we find that series of 40 re
o,
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sion coefficients are sufficient to converge the density if
assume a temperature of 10 eV~calculation performed with
the model potential used at 3 eV!. A multiscale strategy in-
volving 10 recursions on 1, 2, and 4-grids then requi
about 40 sec to calculate the electronic density on 128 p
cessors.

Our reference system permits an accurate compar
with FEMD calculations. But it was not designed to hig
light the advantages of the recursion method. It is too sm
and the temperature is low. Although it was imagined eig
years ago, the recursion method in real space has never
used to our knowledge, because of a prohibitive computa
time. The multiscale approach that we have constructed
implemented cuts down this computation time by two ord
of magnitude, thus opening a different approach to theab
initio simulation of hydrogen plasmas. The computation tim
is now of the order of magnitude of that of the referen
method, and could become smaller by means of massi
parallel computing. Future work includes~1! reaching self-
consistency and~2! implementing the scheme within a mo
lecular dynamics code. Regarding the first point, an attr
tive strategy would consist of performing scalewise se
consistent calculations.
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