PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Multiscale recursion in dense hydrogen plasmas
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We present and assess a multiscale recursion method to calculate electronic density via the Green'’s function.
The method lies within the framework of finite temperature density functional theory and uses a real space
approach. It provides a satisfactory description of the first Brillouin zone without invdkipgints. Unlike
methods that explicitly calculate eigenstates, the computational workload decreases with temperature. Tests are
performed on a system representing a hydrogen plasma with a local pseudopotential. Calculations are distrib-
uted on real space grids with different spacings using scaling properties of the recursion. The computational
workload increases linearly with the size of the system and can be productively dispatched on an arbitrarily
large number of processors.

PACS numbgs): 52.65-y, 71.15.Mb, 71.23.An

I. INTRODUCTION ciently large energy rangd5].
The method we present is a finite temperature extension
Interest in dense hydrogen plasmas is threefold. Firstof the proposal of Baroni and GiannoZ£4i6]. Considering a
these plasmas are important in astrophygidssince hydro- ~ silicon crystal at zero temperature, they performed a recur-
gen is responsible for 80% of our solar system. Second, the§ion on a regular grid in real space using a finite difference
are the core of inertial confinement fusion. Their descriptionfepresentation of the Hamiltonian to compute the diagonal
is thus a technological issue. Last, a plasma phase transitidgfm of the Green’s function. The computation time is then
might occur at temperatures and densities characteristic d¢foportional to the number of atoms in the cetirder N
giant planets and low-mass brown dwa®s3]. The plasma Method, in contrast to the square of this number for schemes
properties relevant to these problefesuation of state, con- involving eigenstates. The prefactor, however, was very
ductivity, viscosity depend on modeling the electronic large and the method was not competitive with diagonaliza-
screening of the field created by the ions. This problem ha§on techniques. A finite temperature extension of the recur-
recently been tackled using a variety of methésise[4] for ~ sion method has already been introduced in the context of
a comparison Path integral Monte Carlo calculations have bond order potentialgl 7,18, essentially as an artificial way
been performed to investigate the existence of a plasmi#® broaden the Fermi surface. Because of the subsequent
phase transiti()'ﬁs]_ Other methods re|y on a more approxi_ damplng of Friedel’s oscillations, the convergence of the re-
mate treatment of the interacting many-fermion prob|em, usCUfSiOﬂ is Substantially improved. Thus, it seems natural to
ing either the tight binding moddl] or the local density investigate the behavior of a real space recursion scheme
approximation of the density functional theafFT/LDA).  When the electronic temperature is finite, as is the case in a
Clerouin and co-workers performeb initio molecular dy-  Plasma. The resulting method can be expected to provide
namics using Thomas-Fermi-like functionfifs8,4]. The dy- ~ order N parallelized code, whose computational speed in-
namical variable is then the electronic density directly and néreases with temperature, because of enhanced localization
electronic state needs to be considered. This method, how®f the density matri19]. This is, of course, in sharp con-
ever, has the shortcomings of the Thomas-Fermi approximdtast to wave function methods.
tion. An important step toward an accurate simulation of We first give a brief overview of the Green'’s function and
plasmas was taken by Alavi and co-workées-13. The  recursion techniques that we use and of their application to
electronic density is obtained by summing up the squares ghe calculation of the electronic density in a hydrogen
occupied wave functions. Because the number of occupieBlasma. We then present several approximations that we ex-
states increases rapidly with temperature, their method iBlain from a local density of staté&DOS) viewpoint, and
usually limited to temperatures smaller than a few eV. compare the results with those of the free energy functional
A method to calculate the electronic density with themolecular dynamic§FEMD) code of Alaviet al. [12,14].
same accuracy without recourse to eigenstates would thus B¥e finally propose and assess a multiscale recursion method.
quite useful. This is the main thrust of our work. In this
paper, we present a method to calculate accurate electronic
densities at higher temperatures from a local pseudopoten-
tial. The case of hydrogen is simple in this respect because Following[12], we place ourselves within the finite tem-
core electrons are irrelevant. The pseudopotential aims gerature DFT framework20,21. We use Mermin’s func-
representing smoothly the Coulomb singularity in a suffi-tional together with the Kohn and Sham approximation to the
kinetic energy. The local density approximation is used to
describe exchange and correlation. Thus, the electronic den-
* Author to whom correspondence should be addressed. Electrongity is the weighted sum of the squares of one-electron eigen-
address: bagnier@bruyeres.cea.fr functions:
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. chain, a recursion state,) is coupled to the states that are
P(f)=2i fidi (1) i(r). (1) immediately before and after it:

In this expression, the factdy is the Fermi-Dirac occupation Hlup) =bp|ug-1)+an|ug) +Ppsa|Upsa). (7
fi=(1+efls~M)~1 the chemical potentigk is chosen to , , , _
achieve electric neutrality, and the one-electron eigenfunclNis equation definefii, 1), by, anda,. The recursion
tions are the self-consistent solutions that minimize Mer-Coefficients are

min’s functional. They are solutions of . .
an:<un|Hun>1 bn:<un—1|H|un>- (8)

( 5T veff(ri)) di(ri) =€ di(ri). 2 These coefficients are, respectively, the energy in the state
|u,) and the hopping integral between stateg ;) and
When the interaction with the ions is represented by gu,). In summary, the recursion produces an orthogonal ba-
pseudopotentiab s, the self-consistent effective potential sis of states in which the Hamiltonian has a tridiagonal form.
verr is obtained from the electronic density and the ionic This remarkable property allows the diagonal element of the
positions as Green’s functionG(r,z) = (uo|G(z)|u,) to be written as a
() continued fraction in terms of the recursion coefficieats
veﬁ<r>=J|’L—r,|dr'+gsvps,<|r—Ri|>+vxc<p<r>). andby [24]
1
(3) G(r,Z)= (b )2
Hence, the electronic density determines the potential, but z—ag— ! 5
the density depends on the potential by means of the one- (b2)
electron wave functions. Our objective is to bypass the cal- Z—a,—---
culation of wave functions when calculating the density from
the potential. This is possible using Green’s function tech- The local density of states can then be computed as
nigues combined with the recursion method. The electronic
density can be directly expressed in terms of the one-electron n(E,r)=— 1 jim Im G(r,E+is). (10)
Green’s function: T s-07"

©)

i To simplify notations, we will denote the LDOS hy(E),
p(r)=—— jg f(z)G(r,z)dz (4)  the real space location being always implicit. As the knowl-
m edge of the LDOS leads to the electronic densityr ,irthe
In this expression, the integral is performed on a contour fecursion coefiicients toge.ther with .E(.q‘) are sufficient. As
the complex energy plane which contains the relevant pole ill be shown, the recursion coefficients that we generate
uctuate around some constant values, and converge to these

of the Hamiltonian but leaves out the poles fqz). The . i !
. : K values when the rank increases. We will therefore use linear
factorG(r,z) is the diagonal element of the Green'’s operator . i
response around the constant chain model, which can be

calculated at a real space pomt found in Ref.[23].
A A The constant chain model is obtained when the coeffi-
= - _ 1
G(r.2)=(r[G@)Ir)=(rlz=H)~Ir). ®) cientsa,, and b, are constants equal t® and b. Haydock
The recursion method permits an efficient calculation 01‘5hOWS that the Iocal-densny of statgs ass.omated with this
the diagonal matrix elements of the Green’s function in any-h@in forms an arc with centerand width :

state[22,23. Expression(5) assumes the use of the localized 5 R

basis|r). Expressing the Hamiltonian in this basis is there- n(E)= Vab®—(E—a)7/4b™" if a—-2b<E<a+2b
fore a prerequisite to performing the recursion. This can be 0 otherwise.

done by means of a finite difference approximation, as (11

shown in Ref[16]. Given an appropriate formulation for the

Hamiltonian, the recursion is performed by constructing aAssuminga=2b, the lower band edge is equal to zero. Re-
chain of states. The initial statel|isy)=|r). The principle is mark thatn(E) has been normalized so as to be independent
then to describe how this localized state is coupled by thef a=2b in the limit of small energies. Fluctuatios,, and
Hamiltonian to its environment. A part dfl|uy) projects ob,, around the constant valuesand b generate modifica-

onto |uy). The rest of it is orthogonal thu,) and defines a tions in the LDOS. Within linear response, Haydock shows
new stateu,): that the correctiordn(E) to the above density is equal to

H|ug) = ag|Ug)+ by|uy). (6) R .
) = olti) + sl ON(E)= s 3, {63, sin(2n+2)0]
. . . ™ n=0
The normalized statfu,) is then coupled by the Hamil-
tonian to a new state, orthogonal to bth) and|u,). The + b, 1 sin(2n+3) 6]}, (12
recursion is the iteration of this process, which defines se-
quences of states and recursion coefficients. Further in thehere 6 is a reduced variable ranging from zero#o



PRE 61 MULTISCALE RECURSION IN DENSE HYDROGEN PLASMAS 7001

E—a TABLE |. Characteristics of the test system.
02005_1 T . (13)
Temperature 3 eV
. . ) ) Density 0.5 glcm
The é6a, qnd b, |n.duce cor_rectlons in the ITDOS which lon sphere radius r—172au,
are, respectively, antisymmetric and symmetric with respect .- r—g JE o~ 5.2
to the center of the distribution. The fluctuations associated ping p Coulomb” =kinetic - =
. . Degeneracy 0=T/Trerm~0.18
with very large values of do not strongly affect integrated _. de of the simulati I 7
guantities such as the electronic density, thus justifying al§' € OC € simuiation ce 16 hvd au.
approximate treatment of the continued fractj&u. (9)] for -omposition hydrogen atoms
large n. As will be seen, our calculated coefficients always Discretization 32 points per dimension
saturate around some constant values. This will allow the use  Energy cutoff 103 a.u.

of the constant chain terminator suggested by Haydock: we Boundary conditions periodic
will replace the exact coefficients with the constant values

after a certain rank.
wherer.;=0.25,a=—1.9287,b=0.3374, andr.,=0.284
(all'in a.u).
lll. REFERENCE SYSTEM The value of this pseudopotential at the origin is equal to

Throughout this work, we compare our results with those? Which is about—2 hartree- —55eV. Hence, we expect

obtained from a different method to calculate the electronidiS potential to give ?Srea\fonable description of the density
density. This reference method is that used in the free enerd{:p to temperatures o 5 eV.

: : . The location of the atoms was obtained from a short run
functional molecular dynamics code of Alavi and co-workers . :
y . of molecular dynamics performed with the FEMD code. The

[12,14. It consists of diagonalizing the operatr ! using jyjtig| configuration was bcc, but the temperat(8eeV) was

the Lanczos algorithn{25]. This operator has the same gyficient to obtain disordered configurations. The simulation

eigenvectors as the Hamiltonian. Whes small, itis easier a5 siopped when the averaged atomic motion was larger
to diagonalize than the Hamiltonian, because it is better cong 4, the interatomic distance. The degree of disorder was

ditioned. , . then considered to be sufficient. The characteristics of the
The electronic density is then calculated as the sum of thg, ¢ system are listed in Table I.

squares of the eigenvectors. This technique is performed on a s reference ionic configuration was then used to calcu-
system contained in a periodic box. Hence, the eigenvectoigie self-consistent electronic densities using respectively
of the Hamiltonian are Bloch functions yn(r)  one and eighk points. The electronic density was converged
=Uni(r)exp(k-r), whereu,, has the same periodicity as the \yjth respect to the number &fpoints in the second case. In
potential, and wherd belongs to the first Brillouin zone. poih cases. the electronic density (see Fig. 3 belowand
Following [26-28, the summation upon the first Brillouin ¢ self-consistent electronic and chemical potentigisand
zone, required, for example, when calculating the electroniq, \yere stored. The potentials are to be used as input param-
density, is usually reduced to a finite sum over a small NUMgtars in our recursion calculations. The resulting density

ber of speciak points. The number df points retained in the  j5 then to be compared with the relevant reference density
calculation then determines the accuracy of the calculation

The most drastic approximation consists of retaining only th
center of the first Brillouin zone: thE point. In this case, the
calculated wave functions have the same periodicity as the IV. TESTS OF THE RECURSION METHOD

potential. This approximation may have severe conse- Ag j first step toward constructing an efficient algorithm,
quences, especially when the simulation box is small. Alaviye present a first implementation of the recursion technique
emphasized that the point restriction could skew quantita- that serves as a test of our recursion procedure. This simple
tive calculations for hot dense hydrog¢a3]. Recently,  case will be used later to assess further approximations. We
Deutsch implemented a makypoint ability into the FEMD  restrict ourselves to th& point, that is, we consider only

code[14]. In this article, we will first use thé-point restric-  perigdic states. This approach allows the use of the fast Fou-

tion for testing the recursion method and evaluating the aChioy transform(FFT) to com utel3||u )
curacy of the real space discretized kinetic operators. Then P ns:
we will go beyond this approximation, and compare our re-

sults with eightk-point FEMD calculations. A. Continuous Fourier recursion method
The physical system upon which the comparisons will be - o \inetic term offi is diagonal in Fourier space, with

made.is a hyd_rogen .pla.sma. Th? plasma is simula_ted \.’Vithigigenvalueﬂxz/z When using the FFT to compute this term,
a cubic box with periodic conditions in the three dlrectlonsth

A

start the recursion with a state localized in one of the grid
cells in the simulation box: |ug)=|r). Let|u,) be thenth
state in the chain; the next state is obtained by applying the

r\?2 i
+(a+br2)ex;{ _(_) } (14) following progedure. _ |
lc2 (1) Apply H onto |u,). The Fourier transform ofu,,) is

that we use has been proposed by Giannfkaj:

- 1 f(r
vi(r)=——erf —
! r Mot
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lv)—F[|up)]. 210
Next, we apply the kinetic energy operat@liagonal in re- 1
ciprocal spacg ., s -
#ﬁx .'. - - f- L -" .
k2 140 bL_H- 5*_; . - - w'.. l_ [ ] -
| | - - LY -hﬁ* - .‘. -
v)—|v) > 3 " .
K b 3
8
We transform backv) in real space, g e o o °
Ik > p ° 70 Mm Po B o0 0 ° ,motpo ° O%n o0 0% 5
B ] g P - ko o B oodao °
[v)=F " [|v)]. o
Then we add the potential energy,
|U>H|U>+Ueff|un>- oo 16 32 48 64 80 96 112

rank n
(2) Calculatea,, .

B - B FIG. 1. Calculated coefficienta, and b, obtained using the
an=(Up|H[up)=(uy|v). continuous Fourier recursion method in the free electron case.

(3) Prepare the next chain stdtg, . ;).
LDOS according to formulé&l12). Hence, the observed satu-

[Uns1)—(H—apy)|u,)—bplup_1)=|v)—anu,)—bplu,_;).  ration of the chain coefficients is directly related to the use of
a grid to represent the electrons. Because this feature is
(4) Calculateby, 1 . shared by all the models that we will consider, it will always
) be possible to use the constant chain termin@ee Sec. )l
by 1=(Unta|Upyi1)- We now turn to the calculation of the electronic density

pr in the model system of Sec. lll. A recursion of 100 steps
was initiated in each grid cell. The recursion coefficients
1 were calculated in this process. The Green’s function could
[Upsq)e— b—|n+l>_ then be obtained as a continued fraction using the recursion
n+1 coefficients and the constant chain termingtbe constants
sed were the last values af andb,, calculated. The elec-
ronic density is finally calculated by performing a contour
integral in the complex energy plane according to &g.
In this case the recursion scheme assumes periodic condi-
ns for the chain states. Hence, the recursion describes only

(5) Normalize|u, 1) -

Note that the first step in the chain is singular, because th
state|u_; does not exist. The coefficieht, is taken equal to
zero.

We first test the method in the case of a free electron in %o

periodic box. The simulation box is the one described in the eriodic states. The EEMD calculation that we must compare
preceding section, but the electronic potential is set equal t : P

zero. The initial state is localized into one of the elementary0 Is therefore the one performed using only thpoint. The

cells constituting the grid. This elementary cell is a cube WithtWO methods then solve the very same problem, and, indeed,

a sideh equal to the grid spacinghe 32nd part of the side of

the simulation box Because of periodic conditions, this el- ' ' " continuous Hamitonian
ementary state is reproduced in every image of the simula- constant chain -+
tion box: the electronic state has the simulation box period-
icity.

The recursion coefficients obtained are plotted in Fig. 1.
They fluctuate around some constant values, and the fluctua,, P\
tions ofa, andb,, seem correlated to one another. Note that g A
these coefficients are very different from those calculated by
Haydock in the case of a free electron placed in an infinite
spacd 23]. The first are approximately constant, whereas the
second tend to infinity as increases. This difference can be
understood from the LDOS. The fact that the simulation box
is discretized in real space implies the existence of a cutoff in . . . . .
k space: kinetic energies larger than 3()2/2 cannot be 0 50 100 150 200 250 800
reached(see Fig. 2 Hence, the LDOS of our discretized energy (a.u.)
system forms an isolated band which can be described, t0 @ i, 2. Free electron case: LDOS in the periodic box and LDOS
first approximation, by the constant chain model. In our casepf the related constant chain model. The lower bound is equal to
the constants ara~ 140 andb~70. These are respectively zero and the upper bound is dictated tipythe step of the discreti-
one-half and one-quarter of the bandwidth of the constaniation. E.=Kk,/2=37%/2h?~310a.u. By comparison, the cut-
chain LDOS, as can be checked on Fig. 2. The fluctuationsff energy used in the FEMD calculation is abdeg 1= k2 /2
da, and sb,, have the effect of correcting the shape of the=7?/2h?~103 a.u.




PRE 61 MULTISCALE RECURSION IN DENSE HYDROGEN PLASMAS 7003

continuous Hamiltonian
--------- 3 points discretized Hamiltonian --------
012 - i 4 5 points discretized Hamiltonian -

electronic density (a.u.) ) —
0.04 -~~~

02 r

0.15

0.1

LDOS

0.05

0 50 100 150 200 250 300

FIG. 3. Reference electronic densjix on a section of the sys-
energy (a.u.)

tem. The zones of high density correspond to ion locations. The
density is approximately constant in between. FIG. 5. Density of states related to the continuous and dis-
. . . L. . cretized Hamiltoniangthree and five poinjs

the densitypg is then essentially similar tp, (Fig. 3. The
map of differences is shown in Fig. 4. Expressed in Fourier space, this kinetic operator is diagonal

The densitypg is thus very close t,. It is slightly  gnq jts eigenvalues are
larger, showing a maximum difference of 2% localized close

to the ions. We attribute this positive difference to the fact cogkyh)+cogk/h)+cogk,h)—3
that the two methods do not share the same kinetic operator Ex(Ki.Ky k7)== hZ2 :
approximations. Then the calculated density cannot be (16)

strictly consistent with the effective and chemical potentiels.

We expect that a self-consistent calculation could diminisHf we use five points instead of three, the formulas are
the overscreening seen in Fig. 4. This result validates the 5 .

recursion procedure, the use of a constant terminator, and the 90/ 24h%) +ven(ri) If ri=r;
calculation of the densitjEqgs. (1) and(4)]. —16/24h%) if|ri—r|=h

(WIRITD=Y 12002 itjr,—r )= 2n
0 otherwise

17

B. Real space discretized kinetic operator

Between 1992 and 1997, Baroni and Giannozzi and Ge-
bauer performed recursions using a kinetic operator disand in reciprocal space
cretized in real space. They used thrg6] and five-point
[29] finite difference formulas. The discretized Hamiltonian
can be expressed in Fourier space or directly used in real Ex(ky Ky kz) = G—hz( 16, cogkih)
space, with no recourse to Fourier transforms. '
Let h be the grid spacing, and;|H|r;) the coupling be-
tween a state localized in and a state localized in. The —Ei cog 2kih) — 15)- (18
three-point formulas are

Xyz

Xyz

YhP4yo(r) i ri=r. _Again, we firs_t consider the free _electrpn case ir_1 a peri-

A b odic box. The eigenvalues of the discretized Hamiltonians
(rjlAjry=4 —L2n® i [ri—rj|=h (150 tend to those of the continuous Hamiltonian whih is

0 otherwise. small. For larger values dk|, the change in the eigenvalues

can be interpreted as a change in the LDOS which is repre-
sented in Fig. 5. On this figure, we clearly see that the five-
point formula is more accurate than the three-point one, be-
cause the associated density of states is closer to the exact
one in a larger energy zone.

The recursion coefficients for a free electron in a periodic
box related to the five-point discretized Hamiltonians are
shown in Fig. 6 and listed in Table Il. The coefficients show
saturations for smaller values than they did with a continuous
Hamiltonian, because the bandwidths associated with the
discretized Hamiltonian are smallesee Fig. 5. The fluctua-
tions around these constant values are also much smaller.
Moreover, the value of, calculated with the three-point
formula is exactly constant. This is because fluctuatiorsg,in

FIG. 4.|pr—pal: density differences between the two methods, would generate antisymmetrical corrections to the constant
related to the section shown in Fig. 3. chain LDOS(Fig. 2), whereas the three-point LDOS is ex-

Recursion vs FEMD, 1 k-point
0.00.

electronic density differences (a.u.)

IR IR =IK=)
P = e = = Sl
SOOOOOOOSS
SOIONRRORD

OGI=OINNIE I
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FIG. 6. Recursion coefficients, andb,, for a free electron in a
periodic box, calculatedl) with a continuous Hamiltoniarsolid
line) and(2) with a five-point formula within the conditions of Fig.
1 (dots.

actly symmetrical with respect to the center of the bérid.
5). Fluctuations ira,, are therefore unnecessary to obtain the
exact three-point LDOS.

We next compare the convergence properties of variou
schemes in the free electron case. A temperature of 3 eV
assumed. The chemical potential is evaluated within th
Thomas-Fermi approximation, assuming a density corre
sponding to 16 electrons in the simulation cell. This approxi-

mation should not affect the convergence rate. We then call

culate the density as a function of the numhef recursion
coefficients taken into accoutwe replace the coefficients of
rank higher tham by a,, andb,). The results are shown in
Fig. 7.

The densities converge toward the same limit despite th
fact that the densities of states are very different. This i
because the occupied states have small enefg@spared
to a, for instance, and because the various expressions fo
the kinetic energy are equivalent in this limit. The faster
convergence of the discretized schemes is interpreted as f
lows: The densities of states related to discretized schem
are closer to their associated constant chain densities
states. Hence, small correctiofs(E) to the constant chain
model are sufficient to obtain an accurate representation

the exact LDOS and, therefore, of integrated quantities sucf

as the electronic density.

We now compare the discretized schemes with the refe
ence methodsee Fig. 8 The FEMD code yields a potential
vest @ chemical potentiaju, and an electronic density,
calculated with thel” point only. Using the potentials, we
calculate an electronic densipg from the recursion method

BAGNIER, DALLOT, AND ZERAH
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50 60
rank n

40 70 80 90 100

FIG. 7. Convergence of the electronic density as a function of
the number of recursion coefficients taken into account. The five-
point scheme converges faster.

and the discretized schemes. The three-point scheme is found
to yield correct results almost everywhere, except in the vi-
cinity of the ions, where we find up to 6% difference with
respect top,. The three-point approximation introduces a
gystematic error, which can only be avoided by using a finer

rid and so increasing the computation time. By contrast, the

ensity differences obtained between the five-point scheme
and (1) the continous Hamiltonian, an@®) the reference
FEMD calculationp, (both in Sec. IV A, are both smaller
han 2%. It is concluded that the five-point discretization
does not alter the precision of the recursion scheme in these
conditions. We therefore retain the five-point scheme in the
rest of this work.

At this point, we have implemented the recursion method
nd validated the use of a constant terminator. We have also
ound an approximation to the continuous Hamiltonian

which is accurate and can be used without recours& to

space. Thus, the recursion can now be implemented in real

space and it need not be constrained by the limits of the
imulation cell. The cell itself is extended by periodicity, but

dae chain states need no longer be subject to periodic condi-

i‘P

ns. The recursion scheme is then equivalent to using many
points in a FEMD calculation. However, extending the

&hains is computationally expensive since computation time

rows like the fourth power of the chain length. We now
present a strategy that allows extending the chains at a rea-

I,§onable cost.

V. MULTISCALE STRATEGY

When concluding their pap¢i6], Baroni and Giannozzi
remarked that recursion chains starting from neighboring

TABLE Il. Recursion coefficients for a free electron. Units are a.u. throughout.

Continuous Five-point discretized Three-point discretized
Hamiltonian Hamiltonian Hamiltonian
Average value of ~140 ~80 ~60
Average value ob ~70 ~40 ~30
Fluctuations ina ~20 ~5 no fluctuation
Fluctuations inb ~10 ~2 ~2
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T T
1-recursion

2-recursion =
1 4-recursion o -

electronic density differences (a.u.)

0.005
0.004
0.003
0.002

ol
o ‘ b |
1My o

Fluctuations of the a coefficients (a.u.)

FIG. 8. |pr—pal: absolute differences in the calculated densi- 02
ties between the reference modEl point) and the recursion per- 04 ;
formed in the five-point scheme. The differences are calculated o 10 20 30 40 50 60 70 80
the section of the simulation box shown in Fig. 3. 1-recursion rank

FIG. 10. Fluctuations of the recursion coefficients with steps
points contain almost the same information. Hence, much ofh, and 4: éa,y, 6A,y, and 8A,. They are small and ap-

the calculation performed in the recursions appears to bproximately superimposable whe is large. These fluctuations
redundant. In their conclusion, they envisioned the use of arise from both the kinetic and potential terms.

hierarchy of chains related to different grid spacings, which . .
would allow the calculation of better terminators. Unfortu- _For the same sys.tem, we now ConS|Qer wa different
nately, this procedure was never implemented. We now prod"ds. one with a spacink, denoted the 1-grid, and the other

pose an analysis of the recursion coefficients that permits \é’ith a_spa(_:ing B, O!enoted th_e 2-grid. Each cell in the 2-grid
practical use of this idea. contains eight 1-grid cells. H is small, a property calculated

As seen in Sec. II, the recursion coefficients are aliases dft @ 2-9rid cell is approximately an average over these eight

the LDOS. Within linear response theory, the recursion co+-0rid cells. We can iterate the procedure and definé-a 2

efficients can be calculated from the LDOS as the coeffidrd With a spacing 2h. For example, each cell in the 4-grid
cients that dictate its shape in a certain bdsig. (12)]. contains e|ght 2-grid cells and 64 ceI_Is in the finer grid.
Hence, the coefficients vary continuously from one cell to A recursion performed on thePyrid is denoted a 2 _
another, because the LDOS does. In addition, the recursidgcursion. The chain states it generates have the same spheri-
coefficients represent couplings between consecutive chaffft Structure obtained in the 1-grid. Thén chain state, how-
states. The chain states generated in our recursions take sf(e". would roughly correspond to the chain state cal-
nificant values within zones that can be schematically repreculated on the 27"-grid and initiated from any of the eight
sented as spheres with radii proportional to the rank in th&€lls included in the initial state. Indeed, Gebal@9] has
chain. Thenth recursion coefficients thus represent the re-0PServed a strong correlation between the fluctuations of the
sponse at the center of the sphere to perturbations in the zoffgcursion coefficients on the 2-gridA,, 5B,,) and those on
described by the sphere, as mediated by the chain states &€ finer one 8az,,ob,n) (Fig. 10. As proposed irf29], an
order lower tham. The recursion coefficients related to two €Xplicit understanding of this property is obtained from an
neighboring cells will therefore be closer when the rank is@nalysis of the LDOS. _ .

large, because the spheres tend to be identical. This trend is YWhen performing a recursion for a free electtpotential

observed in the calculated coefficiertsee Fig. 9. set equal to zenp fluctuations in the recursion coefficients
sa™®=a™—3 and sb™°=b™—b transform the constant
848 . . , chain LDOS(Fig. 2) into the LDOS associated with the dis-
pota o cretized Hamiltoniar{Fig. 5. Because these fluctuations are
84.6 small, this modification to the LDOS can be obtained within
" linear respons¢Eq. (12)]. When performing the recursion
' with a step 4, the discretized free electron Hamiltonian is
§ 842 [I9 divided by a factor 4. This implies that the recursion coeffi-
g (\ i cients, the bandwidth, and the zone where &2 LDOS is
2 84 M \ correctly described are divided by this factor a=4A, for
8 sas biblnT example. The normalization introduced in Ed1l) makes
© !\l Xﬁx the small energy part of the free electron LDOS invariant in
83.6 AR Poec this change of scale.
“’MM‘XWN g™ In the general case, the LDOS accounts for the existence
il of a potential. The recursion coefficients have additional
3.2 fluctuations: saP”'=a,— sa™®*—a and sbP%'=h,— sb™®

10 20 30 40 50 60 70 80

ok —b. These fluctuations are smaller than those shown in Fig.

10, and they vary continuously from one point to another and
FIG. 9. Coefficientsa, related to two neighboring points 1 and from one rank to another. Our objective is now to use the
2 in the model system. invariance of the LDOS in a change of grid to interpolate the
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TABLE lll. Correspondence of ranks from one scale to another.
The associated density corrections are identical in the limit of small
energies.

Sy T T
\{0 from a 2-recursion
a2y from a 1-recursion -------- ]

4-recursion 2-recursion 1-recursion H
Coefficient N 2N+1 g _
a N 2N+1 AN+3 3 |
Coefficient N 2N+1/2 %
b N 2N+1/2 AN+3/2 s
E
[=]

saP® and bR fluctuations on a 1-grid from the fluctuations
SAP® and 6BR* on a 2-grid. Because the additional fluctua-
tions SAP and SBR™ are small, their contribution to the

LDOS can also be obtained within linear response theory Energy (a.u.)

around the constant chain model. We now make use of this

property to establish a relation between fluctuations related FIG. 11. Example of correspondence between density correc-
to different grid sizes. Sinca=2b, A=2B (see Sec. )| a tions to the constant chain model related to stép2h, and 4.

= 4A and identifying the related corrections to the LDOS in The corrections related @, 3, Azy+1, and.A, are identical in

the limit of small energies, we write the limit of small energies.

pot E

> —zb—pl,zsir{(Zp+ 2)cos‘1(ﬁ— 1 ing new recursion coefficients by merging recursion steps by

P groups of two. The number of coefficients in the new chain
E is half that in the original one, as is the case with a

(2q+2)cos‘1(ﬁ—1”. (29 2-recursion. The renormalized chain, however, retains more

information in the 1-recursion than can be found in the

2-recursion.

term as\E/b whenE/b is small, the two series coincide for 1_rgfgririg]nelsg’;’cf%ijér?gp;%arﬁh;_ﬂlngds fr;%:jr;ts?gﬂzl_a@g |Etéirr_1t

5agg_t+1:25Agm and 565?: 0. _ _ form three recursions of 20 steps each, with grid spadings

Since the 1-recursion coefficients contain more informapp, and 4. We then constitute an interpolated chain,b,,
tion than the 2-recursion ones, there is a certain freedom ofg gj1ows. Fom=20, we retain the single step coefficients.
choice for the interpolation formula. Because the calculateg, 21=n=40, we interpolate the potential-related fluctua-

pot : ; . o
day, " are continuous from one rank to another, we interpolatgjons of the double step coefficients and add the free electron

” by Giannozziet al.[24]. The latter method consists of build-

pot

q .

%E —2512 SN
q B!

Focusing on the small energies, and expanding thelcos

ot . . ..
the 533 for the even values qﬁ S|ng|e Step coefficient:
pot _ oppot
932+1= OAq 20 agn=aby+ OAR 15,  bon=biR+ BRY 4y,

(22)

5ab%= sAP°!, , interpolated. (21) free ot free ot
2 q-1/2 An1= N1 T OARY,  bong1=DbaoNG g+ 6BR 1

q

A similar identification can be performed for 4-recursions ) o . . .
and for coefficient®. A noninteger rank is found in the latter Here, fractional indices indicate interpolation. For<4i
case. This means that 1-recursion coefficients interpolatg 80; We interpolate the quadruple step coefficients:
those related to a double step. The results are summarized in

T X ; X . i _ free pot __iree pot
Table Ill. This interpolation scheme is still compatible with Aan=asn T OAN— 3, Dax=Dbax+ B3,
Eqg.(19). An example of the correspondence between density . . . .
corrections is shown in Fig. 11. Agnr1= sy 1T OARL 12, Dany1=bani 1+ OBRE 1,
We may now compare efficiently the recursion coeffi- (23
i i i i _Af t _pf t
cients related to different scales. Given a sedag®f recur- Agnr2=auns ot OARY 14, Dapio=byai o+ OBRY s,

sion coefficients, we first subtract the associated free electron
coefficientsa™®=a+ 5a®, so as to remove the fluctuations
associated with the kinetic term. The remaindab®=a,,
—a/*®is then due to the potential. The fluctuatio’e}y-. ;,  For n=81, we use the constant chain terminator with con-
SABS:, 1, and SARY are compared in Fig. 12. As expected, stants equal t@g, andbgy.
the fluctuations are smaller and the agreement between dif- The computation cost grows like the fourth power of the
ferent scales is improved over those in Fig. 10. This scalehain length. Furthermore, the relative locations of the 4, 2,
invariance property is the basis of the multiscale approacland 1-grids are such that only one 4-recursion is necessary
that we now propose. for 64 points on the 1 gridone 2-recursion for 8 points on

It may be remarked that this scale invariance propertythe 1-grid. The multiscale strategy is therefore 224 times
does not correspond to the renormalization method proposedster than a method in which a recursion of 80 steps would

_ Lfree ot _ nfree ot
Aana=aunrat OAR 10, Dapra=bai s+ OB as,
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FIG. 12. Additional fluctuations of the recursion coefficients . FIG. 14. Values ofp/Ja, calculated for a representative point

with stepsh, 2h, and : sab*, AR, and 8AR%". The agree- in our model system.
ment is improved over that in Fig. 10. The fluctuations related to the

kinetic term have been subtracted and a shift has been taken infé1terpolation or constant chain value
account. We finally compare the densityg calculated in the ref-

erence system with our method, and the dengijtycalcu-
need to be performed in every point of the 1-grid. Let us nowlated with the FEMD code. Our recursion calculation is per-
check the accuracy of this approximation. Figure 13 show$ormed in an extended cell, meaning that the chain states
an example of the relative differences between the exact arektend into the images of the simulation cell. Our result is
interpolated recursion coefficients. The relative differenceg¢herefore compared with the reference FEMD calculation
are of the order of 10* for coefficients originating from the performed with eighk points. The results are shown in Fig.
2-recursion, and of the order of 16 for those calculated 15. The observed differences are smaller than 2%. This ac-
from the 4-recursion. curacy validates our multiscale approach. We now turn to the
These differences can be assessed in the light of the pagomputation time required by the method.
tial derivativesdp/da,, . The derivatives are shown in Fig. 14
for a representative point in our reference systeariations
of the derivatives were found to be small throughout the
system. The fluctuations seen on the figure are related to A direct comparison of computation time with the FEMD
Friedel's oscillations. The fluctuations tend to zero and thissode is not so easy. During the self-consistent calculation, it
means that the remote details of the potential will have 200k an average of 1 min 40 sec for FEMD to calculate the
limited impact on the density where the recursion was initi-electronic density from the electronic potential on 64 proces-
ated. Given our choice of discretization, the density is moskors of the T3E Cray computer of Brurgs-le-Chgel. This
sensitive to the coefficients with ranks smaller than 20. Wesomputation time is the best we obtained using this machine.
therefore retain exact coefficients up to this rank. The smallerhe computation time using 128 processors is considerably
amplitudes of the derivatives with higher ranks justify the|arger than that with 64 processors, since the communication
use of an approximation for the corresponding coefficientgime increases with the number of processors. Our multiscale
recursion took 9 min 30 sec to calculate the density using
0.0008 128 processors. Although this computation time is larger, the

VI. DISCUSSION

0.0007

0.0006 4 FEMD vs Multiscale Recursion Method ———

electronic density difference (a.u.)

0.0005 .

0.005
0.0004 0.004

0.003
0.002
0.001

0.0003

0.0002

1-recursion vs multiscale relative difference

0.0001

‘ ‘n b L
0 10 20 30 40 50 60 70 80
rank

0

FIG. 13. Relative differences between thg calculated in a FIG. 15.|pr—pal: Map of differences between the FEMD den-
recursion of 80 steps and the coefficients deduced from our intersity using eight points, and the multiscale recursion performed in
polation procedure. an extended cell.
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scaling properties of our method make this a very good resion coefficients are sufficient to converge the density if we
sult. assume a temperature of 10 €salculation performed with
Because recursion calculations are independent from ongae model potential used at 3 £\A multiscale strategy in-
point to another, the computation cost is proportional to thesolving 10 recursions on 1, 2, and 4-grids then requires
size of the system. Our method is competitive with FEMD ahout 40 sec to calculate the electronic density on 128 pro-
when the size of the system is increased. A system of 9@egsors.
hydrogen atoms would require six times as much time with  Our reference system permits an accurate comparison
our method, and =36 times as much with FEMD. Both \ith FEMD calculations. But it was not designed to high-
methods would need the same time on the T3E Cray in thiight the advantages of the recursion method. It is too small,
case, but the balance falls in favor of the recursions for largegnd the temperature is low. Although it was imagined eight
systems. years ago, the recursion method in real space has never been
The recursions, however, can be distributed on an arbigsed to our knowledge, because of a prohibitive computation
trary number of processors. When running the program on gme. The multiscale approach that we have constructed and
parallel computefor on a farm of workstationsit suffices  jmplemented cuts down this computation time by two orders
to distribute grld pOintS into small groups which are thenof magnitude' thus opening a different approach to dbe
dispatched to processors. In our multiscale approach, thigitio simulation of hydrogen plasmas. The computation time
groups retained are the 4-grid cells, which are groups of 645 now of the order of magnitude of that of the reference
cells in the l-grld The recursion calculations can then anethod, and could become smaller by means of massive|y
performed without communication between processors, anfarallel computing. Future work includés) reaching self-
the total Computation time is Slmply divided by the nUmberconsistency an(ﬂz) imp|ementing the scheme within a mo-
of processors used. The use of massively parallel computingcular dynamics code. Regarding the first point, an attrac-
would definitely make the recursion method faster. tive strategy would consist of performing scalewise self-
Another important property of the recursion is its behav-¢gnsistent calculations.
ior with respect to temperature. Unlike schemes in which
eigenstates are computdeEMD, for examplg, the calcula-
tion of the density in the recursion framework is faster at
higher temperature. The 3 eV temperature that we considered
is the highest limit that can reasonably be simulated with We wish to thank Thierry Deutsch for his help with
FEMD. By contrast, this temperature is low for the recursionFEMD code andk points, and Ralph Gebauer who sent us a
scheme to be efficient. Shorter chains are sufficient at higheropy of his master’s thesis. We also thank Patrick Blottiau,
temperatures. As an example, we find that series of 40 recudean Cleouin, and Pierre Noiret for useful discussions.
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